
Networking and Socket
Communication

Fundamentals of Computer Science

Outline

 Networking basics
 Difference between: clients and servers
 Addressing

 IP addresses, hostnames, DNS
 Private addresses, localhost

 Port numbers

 Socket communication
 Byte-level communication between two hosts
 Java client: reading/writing text
 Java server: accepting clients, reading/writing text

 Single threaded examples
 Magic-8 ball
 Magic-8 ball persistent

 Multi-threaded servers
 Magic-8 ball multi-threaded server
 Shared key/value server

Clients and Servers

 Client program

 Requests a service

 Web browser

 Streaming audio player

 Twitter client

 MMOG client

• Server program

– Provides a service

• Web server

• Streaming audio from
radio station

• Server at Twitter

• MMOG server

Clients and Servers

 Client program

 "sometimes on"

 Doesn't talk to other clients

 Needs to know server's
address

• Server program

– "always on"

– Handles requests from
many clients

– Needs fixed address

Communication Components

 Network

 Transports data from source to destination host

 Uses destination IP address

 Operating system

 Data is forwarded to a "silo" based on port #

 e.g. Port 80 requests routed to the web server program

 Application

 Actually reads and writes to socket

 Implements application-specific "magic"

 e.g. Implementing a mail reading/writing protocol

 e.g. Implementing a file retrieval (FTP) protocol

 e.g. Implementing a particular online game

Naming Computers

 Goal: Establish communication between A and B

 How do computer A and B refer to each other?

 The network needs an addressing system

 IP (Internet Protocol) address

 IPv4 address

 32 bits ~ 4 billion hosts

 Usually expressed as four numbers 0-255 (8 bits)

 e.g. 173.194.79.106

 IP address uniquely identifies a network endpoint

 Devices inside network (e.g. switches, routers) use a packet's IP
address to get it to its destination

Communication from H5 to H8

173.194.79.106

179.200.1.10

DNS – Domain Name System

 Problem 1: Humans can't remember all the
numbers in an IP address

 Domain Name System (DNS)

 Converts readable name to numeric IP address

 e.g. www.google.com -> 173.194.79.106

http://xkcd.com/302/

http://xkcd.com/302/

IPv4 exhaustion

 Problem 2: IPv4 only has 4 billion addresses
 7 billion people, all want a laptop, Xbox & iPhone

 Jan. 31, 2011
 Last unreserved IANA /8 blocks allocated

 5 remaining blocks allocated to Regional Internet registries (RIR)

 IPv6 went live in 2012

Private IP addresses

 Private IP addresses

 Allow construction of a private network

 Route data between endpoints on the private network

 Addresses aren't valid outside network

 192.168.x.x, 10.x.x.x, 172.16/31.x.x

 Typically what you'll have:

 On home network

 On campus network (wired/wireless)

 127.0.0.1 (localhost)

http://xkcd.com/742/

http://xkcd.com/742/

Port Numbers

 Problem 3: Many apps on same computer want to
talk at same time

 Chrome process:

 Browser tab 1 wants: http://google.com

 Browser tab 2 wants: http://google.com/gmail

 Browser tab 3 wants: http://facebook.com

 Thunderbird process:

 Email client wants IMAP4 to techmail.mtech.edu

 Solution: Use IP address + port number

 A 16-bit number: 0 - 65535

 Port number determines app message is routed to

 Just a "virtual" port, only exists in the OS

Port Numbers

 Popular applications have known ports
 Ports 0 - 1023: reserved for well-known services

 Only administrators can start servers on these ports

 Ports 1024 - 65535: available to any user-level application

Port Service

21 File transfer protocol (FTP)

22 Secure shell (SSH)

23 Telnet

25 Simple mail transfer protocol (SMTP)

53 Domain name system (DNS)

80 Hypertext transfer protocol (HTTP)

110 Post office protocol (POP)

143 Internet message access protocol
(IMAP)

443 HTTP secure (HTTPS)

Use of Port Number

192.168.23.100:80 Requesting a non-
secure web page

web
server

mail
server

OS

192.168.23.100:443 Requesting a
secure web page

web
server

mail
server

OS

192.168.23.100:143 Requesting new
email messages

web
server

mail
server

OS

Firewalls

 Problem 4: You can't always get there from here:

 Communication may by filtered by network

 e.g. by a firewall at the border of Tech's network

 e.g. by the wireless access point in Main Hall

 Often by the port number

Sockets

• Socket API (Application Programming Interface)

– Allows communication over IP (Internet Protocol)

– Originally in Berkeley Unix

• Thus: Berkeley sockets or BSD sockets

– De facto standard in all operating systems

– API in most programming languages:

– C/C++

– Java

– C#

– …

Java Client: Reading from a Socket

 Step 1: Create a new Socket object

 Needs to know IP address of server + port number

 Step 2: Create an InputStreamReader
 Converts low-level socket data into characters stream

 Step 3: Create a BufferedReader
 Provides buffered reading of character stream

 Step 4: Read some text

Socket socket = new Socket("127.0.0.1", 5000);

InputStreamReader stream = new InputStreamReader(socket.getInputStream());

BufferedReader reader = new BufferedReader(stream);

String message = reader.readLine();

BufferedReader

Java Client: Writing to a Socket

 Step 1: Create a new Socket object

 Or use an existing one

 You can combine reads and writes to same socket

 Step 2: Create an PrintWriter
 Seen previously when writing to a file

 Step 3: Write something

Socket socket = new Socket("127.0.0.1", 5000);

PrintWriter writer = new PrintWriter(socket.getOutputStream(), true);

writer.println("Hello over there!");

PrintWriter

Just some of
the methods in

PrintWriter

Java Socket Server

 Client needs somebody to talk to!

 Server slightly different than client:

 Must be running before client connects

 Server decides port number to listen on

 But doesn't specify IP address

 Doesn't know who is going to connect

 Blocks, waiting to accept an incoming client

 Then reading/writing just as in client

Java Socket Server

 Step 1: Create a ServerSocket object

 Declares what port you are listening on

 Nobody else on the computer better be using it!

 Step 2: Wait for a client to connect

 accept() method blocks until client arrives

 Returns a new Socket object for talking to client

 Step 3: Read/write same way as a client

 Create BufferedReader for reading strings

 Create PrintWriter for writing strings

ServerSocket serverSock = new ServerSocket(5000);

Socket sock = serverSock.accept();

Connection Process
1. Server program starts up.
2. Starts listening on port 4242.
3. OS sends all inbound

connection requests to 4242 to
the server program.

4. Client program starts up
5. Requests connection to server

IP address on port 4242.

6. Server establishes a socket
connection to client, using
outgoing port number 2789

7. Server can listen for new clients
on the 4242 port number.

Magic 8 ball: Internet Edition

 Server:

 katie.mtech.edu – dept. server

 Public IP address

 Running on port 5000

 Delivers 1 of 20 messages at random

 Client:

 My laptop on the wireless network

 Your desktop on the wired network

 Both have a private IP address

 Displays message from the server

Server @ 150.131.202.152
katie.mtech.edu

% java Magic8Server
5000

% java ValueServer 6000

% java ValueClient
150.131.202.152 6000

% java ValueClient
katie.mtech.edu 6000

% java Magic8Client
150.131.202.152
5000

Client1 @ 192.168.1.100

Client2 @ 192.168.1.110

Client3 @ 192.168.1.120

Thread 1

Thread
2

24

Communication Reliability

 Socket communication protocol:

 We'll use TCP (Transmission Control Protocol)

 TCP/IP = TCP over IP (Internet Protocol)

 IP protocol:

 De facto standard for Internet communication

 But: only provides "best effort" delivery

 Messages may or may not get there

 Messages may get reordered in transit

 Luckily: TCP provides reliable in-order delivery

 You can be sure what you read/write will get there (unless
something really bad happens)

Establishing a Connection

Client Server

 Starting a socket connection:
 3-way handshake

 Connection takes a bit to startup

 Keep around if you have an ongoing conversation

Latency

 Signals can only go so fast:

Medium Speed of light

Vacuum 3.0 x 108 m/s

Copper cable 2.3 x 108 m/s

Optical fiber 2.0 x 108 m/s

http://xkcd.com/723/

http://xkcd.com/723/

Latency

• latency = propagation + transmit + queue

• propagation = distance / speed of light

• transmit = size / bandwidth

latency

propagation transmit queue

Queuing delays
inside the network,
e.g. processing by a
router

More important for
short messages, bits
only go as fast as
speed of light

More important for
long messages,
getting the bits on
the wire

28

Firewalls

 Network hardware/software may interfere

 e.g. Hosts on the same network but traffic blocked for certain
port numbers

 katie.mtech.edu
150.131.202.152

Keith's laptop
10.1.20.100

William's laptop
10.1.20.101

% java Magic8Server
5000

% java Magic8Server
5000

% java Magic8Client
10.1.20.100 5000

This failed, wireless access point
(AP) blocked attempt to connect
to port 5000 on 10.1.20.100

Handy network utilities

 ping <hostname or IP address>

 Test if you can reach the destination

 Time for a tiny message to go there and come back

 Round Trip Time (RTT)

 Note: some hosts may disable responding to pings
% ping keithv.com

Pinging keithv.com [69.164.194.211] with 32 bytes of data:
Reply from 69.164.194.211: bytes=32 time=123ms TTL=44
Reply from 69.164.194.211: bytes=32 time=123ms TTL=44
Reply from 69.164.194.211: bytes=32 time=121ms TTL=44
Reply from 69.164.194.211: bytes=32 time=119ms TTL=44

Ping statistics for 69.164.194.211:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 119ms, Maximum = 123ms, Average = 121ms

% ping katie.mtech.edu

Pinging katie.mtech.edu [150.131.202.152] with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 150.131.202.152:
 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

% ping bbc.co.uk

Pinging bbc.co.uk [212.58.241.131] with 32 bytes of data:
Reply from 212.58.241.131: bytes=32 time=162ms TTL=229
Reply from 212.58.241.131: bytes=32 time=160ms TTL=229
Reply from 212.58.241.131: bytes=32 time=162ms TTL=229
Reply from 212.58.241.131: bytes=32 time=163ms TTL=229

Ping statistics for 212.58.241.131:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 160ms, Maximum = 163ms, Average = 161ms

Handy network utilities

 ipconfig (Windows), ifconfig (Mac/unix)

 Find out your wired/wireless IP address

c:\ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . : passcall
 Link-local IPv6 Address : fe80::615f:559:cfb6:8d35%10
 IPv4 Address. : 192.168.1.6
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.1.1

Magic 8 ball: Internet Edition

 Server:

 katie.mtech.edu, public IP address

 Running on port 5000

 Delivering 1 of 20 messages

 Services a single client at a time

 Client(s):

 My laptop on the wireless network

 Your laptop on the wireless network

 Private IP address

 Displays message from the server

Magic 8 ball: Persistent Connections

 Original version: One prediction per connection

 Persistent version:
 A protocol between client and server

Client Server

Wait for client

Make connection to server

Send name of user

Send first fortune

Receive first fortune

Send "MORE"

Receive command "MORE"

Send second fortune

Receive second fortune

Send "QUIT"

Close socket Receive command "QUIT"

Close socket

Magic 8 ball: Multi-threaded server

 Problem with persistent
version:

 One client can hog the 8-ball
for a long time

 Multi-threaded server:

 Spawn a thread to handle
each client

 Server's main thread can
then wait for a new client

Summary

 Networking basics
 Difference between: clients and servers
 Addressing

 IP addresses, hostnames, DNS
 Private addresses, localhost

 Port numbers

 Socket communication
 Byte-level communication between two hosts
 Java client: reading/writing text
 Java server: accepting clients, reading/writing text

 Single threaded examples
 Magic-8 ball
 Magic-8 ball persistent

 Multi-threaded servers
 Magic-8 ball multi-threaded server
 Shared key/value server

